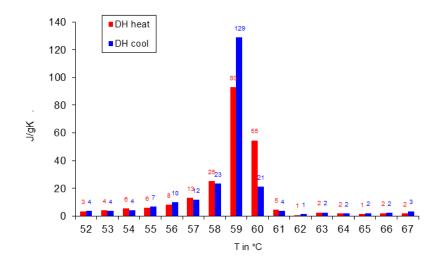
Data sheet

ATP 60

AXIOTHERM® PCMs are designed to absorb and release large quantities of thermal energy at constant temperatures. Over 30 organic (ATP) and inorganic (ATS) high-performance PCM in a temperature range between -40 °C to 140 ° are available in special macro-encapsulated form with an optimized surface-to-mass ratio for faster energy exchange and improved performance in practical applications. Standardised solutions such as our HeatSel®s and HeatPlates are available for water and air-based applications and can be adapted to your specific requirements.


Key features of the AXIOTHERM® PCM are:

- High heat storage capacities
- Consistent, repeatable performance over thousands of thermal cycles
- Simple and safe handling
- Also based on renewable raw materials, nontoxic and biodegradable

Typical Values

Melting temperature	°C	57 to 60
Congealing temperature	°C	57 to 60
Heat storage capacity* temperature range of 52 – 67°C	kJ/kg	230
Specific heat capacity	kJ/kg*K	2
Density (liquid)	kg/l	0,8
Heat conductivity	W/(m*K)	0,2
Volume expansion	%	>10%
Max. operating temperature	°C	120
Flash point	°C	>200

Axiotherm GmbH

Bahnhofstraße 31

D-07607 Eisenberg/Thüringen
Phone: +49 (0) 36691 53 118
Fax: +49 (0) 36691 53 120
E-Mail: Mailbox@axiotherm.de
Web: www.axiotherm.de

The product information given is a non-binding planning aid, subject to technical changes without notice.

Version: 31.01.2018

^{*}Measured with 3-Layer-Calorimeter